THEORETICAL CHEMISTRY INSTITUTE

THE UNIVERSITY OF WISCONSIN

TIME DEPENDENT HYPERVIRIAL THEOREMS AND THE LIKE

FOR PARTATTONAL WAVE FUNCTIONS

by

Saud I - Epsteln

WIS-TOT-146

10 January 1966

ERO FRIGE

OFBT. PRIORICE

Hard copy (HC

dynarobyh i (MP)

1 463 July a

MADISON, WISCONSIN

ζF.

TIME-DEPENDENT HYPERVIRIAL THEOREMS AND THE LIKE FOR VARIATIONAL WAVE FUNCTIONS *

Ъy

Saul T. Epstein

Theoretical Chemistry Institute and Physics Department
University of Wisconsin, Madison, Wisconsin

ABSTRACT

Conditions are given under which optimal variational wave functions will satisfy time-dependent hypervirial theorems, Hellmann-Feynman theorems, etc.

^{*} This research was supported by the following grant: National Aeronautics and Space Administration Grant NsG-275-62.

Let $\Phi_{\mathbf{x}}$ and $\Phi_{\mathbf{y}}$ be optimal time dependent variation wave functions appropriate to the Hamiltonians $\mathbf{H}_{\mathbf{x}}$ and $\mathbf{H}_{\mathbf{y}}$ respectively. $\Phi_{\mathbf{x}}$ and $\Phi_{\mathbf{y}}$ thus satisfy the variational equations $\mathbf{H}_{\mathbf{y}}$

$$(8\,\bar{4}_{x},\,(H_{x}-i\hbar\,\frac{\partial}{\partial t})\,\bar{4}_{x})=0 \tag{1a}$$

$$((H_{x}-it\frac{\partial}{\partial t})\Phi_{x},\delta\Phi_{x})=0$$
 (1b)

$$(\delta \hat{\Phi}_{y}, (H_{y} - \tilde{\lambda} t_{\delta t}) \hat{\Phi}_{y}) = 0$$
 (2a)

$$((H_{y}-\lambda t, \frac{\partial}{\partial t}) \Phi_{y}, S \Phi_{z}) = 0$$
 (2b)

Let us suppose that

$$\delta \Phi_{x} = \gamma F \Phi_{y} \tag{3}$$

with \P a small parameter, is a possible variation of $\P_{\mathbf{x}}$. From (1b) this then implies

$$((H_{x-} i + \frac{\partial}{\partial t}) \underline{\Phi}_{x}, F\underline{\Phi}_{x}) = 0$$
(4)

Similarly if

$$\delta \bar{P}_{j} = 1F^{\dagger} \bar{P}_{x} \tag{5}$$

with F^+ the Hermitian conjugates of F , is a possible variation of $\Phi_{\mathbf{j}}$ then (2a) implies

Subtracting (6) from (4) and using the Hermitian property of $\mathbf{H}_{\mathbf{x}}$ we then have

or

or finally

$$\frac{d}{dt}(\mathbf{\bar{A}},\mathbf{\bar{F}}\mathbf{\bar{A}}) = \left(\mathbf{\bar{A}}, \mathcal{F}\mathbf{\bar{A}}\right) + \frac{i}{\hbar}(\mathbf{\bar{A}}, (\mathbf{h}_{x}\mathbf{\bar{F}} - \mathbf{\bar{F}}\mathbf{h})\mathbf{\bar{A}})^{(7)}$$

For $H_x = H_y$ (7) might well be called a time-dependent (off-diagonal if $\Phi_x \neq \Phi_y$) hypervirial theorem while for F = 1, (7) becomes the time-dependent integral Hellmann-Feynman theorem of Hayes and Parr², though now for optimal variational functions.

Now let us suppose that

$$\delta \bar{\Phi}_{x} = \gamma \frac{\partial \bar{\Phi}_{x}}{\partial x} \tag{8}$$

with λ a/parameter, is a possible variation of Φ_{χ} . Then from (1a) we have

$$\left(\begin{array}{c} \frac{\partial \mathbf{k}}{\partial \lambda}, \left(\mathbf{k}_{\mathsf{x}} - i \mathbf{t}_{\mathsf{x}} \frac{\partial}{\partial \lambda}\right) \mathbf{k} \right) = 0 \tag{9}$$

while from (1b) we have

$$\left(\left(\mathcal{H}_{x} - \tilde{\epsilon} t \frac{\partial}{\partial t} \right) \tilde{\Phi}_{x}, \frac{\partial \tilde{\Phi}_{x}}{\partial \tilde{\lambda}} \right) = 0 \tag{10}$$

Also let us suppose that

$$(\Phi_{x}, (H-it_{\delta t})\Phi_{x}) = 0$$
 (11)

Consider now

$$\frac{\partial}{\partial x}(\vec{x}_{x}, H_{x}\vec{x}) = (\vec{x}_{x}, \frac{\partial H_{x}}{\partial x}\vec{x}) + (\frac{\partial x}{\partial x}, H_{x}\vec{x}) + (\frac{x}{\partial x}, H_{x}\vec{x}) + (\frac{x}{\partial x}, H_{x}\vec{x})$$
(12)

Using (9) and (10) one readily finds that the last two terms on the right hand side can be written as

while from (11), the left hand side of (12) can be written as

it
$$\frac{\partial}{\partial \lambda}$$
 (Φ_x , $\frac{\partial \Phi_x}{\partial t}$) = it $\left(\frac{\partial \Phi_x}{\partial \lambda}, \frac{\partial \Phi_x}{\partial t}\right)$ +it $\left(\Phi_x, \frac{\partial^2 \Phi_x}{\partial t \partial \lambda}\right)$

Putting all this together then, (12) can be written

it
$$\left(\frac{1}{2}, \frac{\partial^2 \frac{1}{2}}{\partial t^2}\right) + it \left(\frac{\partial \frac{1}{2}}{\partial t}, \frac{\partial \frac{1}{2}}{\partial x}\right) = \left(\frac{1}{2}, \frac{\partial \frac{1}{2}}{\partial x}, \frac{\partial \frac{1}{2}}{\partial x}\right)$$

or

$$it \frac{\partial}{\partial t} \left(\stackrel{\bullet}{\Phi}_{x}, \frac{\partial \stackrel{\bullet}{\Phi}}{\partial \lambda} \right) = \left(\stackrel{\bullet}{\Phi}_{x}, \frac{\partial \stackrel{\bullet}{H}_{x}}{\partial \lambda} \stackrel{\bullet}{\Phi}_{x} \right) \tag{13}$$

which is the time-dependent differential Hellmann-Feynman theorem of Hayes and Parr², though now for optimal variational functions.

Footnotes and References

- 1. J. Frenkel, <u>Wave Mechanics</u>, <u>Advanced General Theory</u>
 (Clarendon Press, Oxford, England, 1934) p. 436.
- 2. E. F. Hayes and R. G. Parr, J. Chem. Phys., 43, 1831 (1965).

 They also derive equation (7) for exact wave functions.